Chern characters via connections up to homotopy ∗
نویسنده
چکیده
1 Introduction: The aim of this note is to point out that Chern characters can be computed using curvatures of " connections up to homotopy " , and to present an application to the vanishing theorem for Lie algebroids. Classically, Chern characters are computed with the help of a connection and its curvature. However, one often has to relax the notion of connection so that one gains more freedom in representing these characteristic classes by differential forms. A well known example is Quillen's notion of super-connection [8]. Here we remark that one can weaken the notion of (super-)connections even further, to what we call " up to homotopy ". Our interest on this type of connections comes from the theory of characteristic classes of algebroids [2, 5] (hence, in particular of Poisson manifolds [6]). From our point of view, the intrinsic characteristic classes are secondary classes which arise from a vanishing result: the Chern classes of the adjoint representation vanish (compare to Bott's approach to characteristic classes for foliations). We have sketched a proof of this in [2] for a particular class of algebroids (the so called regular ones). The problem is that the adjoint representation is a representation up to homotopy only [4]. For the general setting, we have to show that Chern classes can be computed using connections up to homotopy. Since we believe that this result might be of larger interest, we have chosen to present it at the level vector bundles over manifolds. In [3] we will describe the secondary characteristic classes which arise in the flat case.
منابع مشابه
0 Chern characters via connections up to homotopy ∗
1 Introduction: The aim of this note is to point out that Chern characters can be computed using curvatures of " connections up to homotopy " , and to present an application to the vanishing theorem for Lie algebroids. Classically, Chern characters are computed with the help of a connection and its curvature. However, one often has to relax the notion of connection so that one gains more freedo...
متن کامل0 Connections up to homotopy and characteristic classes ∗
The aim of this note is to clarify the relevance of “connections up to homotopy” [4, 5] to the theory of characteristic classes, and to present an application to the characteristic classes of Lie algebroids [3, 5, 7] (and of Poisson manifolds in particular [8, 13]). We have already remarked [4] that such connections up to homotopy can be used to compute the classical Chern characters. Here we p...
متن کاملSuper-connections and non-commutative geometry
We show that Quillen’s formalism for computing the Chern character of the index using superconnections extends to arbitrary operators with functional calculus. We thus remove the condition that the operators have, up to homotopy, a gap in the spectrum. This is proved using differential graded algebras and non-commutative differential forms. Our results also give a new proof of the coincidence o...
متن کاملChern numbers of smooth varieties via homotopy continuation and intersection theory
Homotopy continuation provides a numerical tool for computing the equivalence of a smooth variety in an intersection product. Intersection theory provides a theoretical tool for relating the equivalence of a smooth variety in an intersection product to the degrees of the Chern classes of the variety. A combination of these tools leads to a numerical method for computing the degrees of Chern cla...
متن کاملStrong Connections and the Relative Chern-galois Character for Corings
The Chern-Galois theory is developed for corings or coalgebras over non-commutative rings. As the first step the notion of an entwined extension as an extension of algebras within a bijective entwining structure over a non-commutative ring is introduced. A strong connection for an entwined extension is defined and it is shown to be closely related to the Galois property and to the equivariant p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000